
How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes?

Ana Carla Bibiano, Vinicius
Soares

PUC-Rio, Rio de Janeiro, Brazil
[abibiano,vsoares]@inf.puc-rio.br

Daniel Coutinho, Eduardo
Fernandes

PUC-Rio, Rio de Janeiro, Brazil
[dcoutinho,emfernandes]@inf.puc-rio.br

João Lucas Correia
UFAL, Maceió, Brazil

jlmc@ic.ufal.br

Kleber Santos
UFCG, Campina Grande, Brazil

klebersantos@ufcg.edu.br

Anderson Oliveira, Alessandro
Garcia

PUC-Rio, Rio de Janeiro, Brazil
[aoliveira,afgarcia]@inf.puc-rio.br

Rohit Gheyi
UFCG, Campina Grande, Brazil

rohit@dsc.ufcg.edu.br

Baldoino Fonseca, Márcio
Ribeiro

UFAL, Maceió, Brazil
[baldoino,marcio]@ic.ufal.br

Caio Barbosa, Daniel Oliveira
PUC-Rio, Rio de Janeiro, Brazil
[csilva,doliveira]@inf.puc-rio.br

ABSTRACT
Program refactoring consists of code changes applied to improve the
internal structure of a program and, as a consequence, its compre-
hensibility. Recent studies indicate that developers often perform
composite refactorings, i.e., a set of two or more interrelated single
refactorings. Recent studies also recommend certain patterns of
composite refactorings to fully remove poor code structures, i.e,
code smells, thus further improving the program comprehension.
However, other recent studies report that composite refactorings
often fail to fully remove code smells. Given their failure to achieve
this purpose, these composite refactorings are considered incom-
plete, i.e, they are not able to entirely remove a smelly structure.
Unfortunately, there is no study providing an in-depth analysis of
the incompleteness nature of many composites and their possibly
partial impact on improving, maybe decreasing, internal quality
attributes. This paper identifies the most common forms of incom-
plete composites, and their effect on quality attributes, such as
coupling and cohesion, which are known to have an impact on
program comprehension. We analyzed 353 incomplete composite
refactorings in 5 software projects, two common code smells (Fea-
ture Envy and God Class), and four internal quality attributes. Our
results reveal that incomplete composite refactorings with at least
one Extract Method are often (71%) applied without Move Methods
on smelly classes. We have also found that most incomplete com-
posite refactorings (58%) tended to at least maintain the internal
structural quality of smelly classes, thereby not causing more harm

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7958-8/20/05. . . $15.00
https://doi.org/10.1145/3387904.3389264

to program comprehension. We also discuss the implications of our
findings to the research and practice of composite refactoring.

CCS CONCEPTS
• Software and its engineering → Software maintenance
tools; Software evolution.

KEYWORDS
Code refactoring, composite refactoring, incomplete composite,
code smell, internal quality attribute, code metric, quantitative
study

ACM Reference Format:
Ana Carla Bibiano, Vinicius Soares, Daniel Coutinho, Eduardo Fernandes,
João Lucas Correia, Kleber Santos, Anderson Oliveira, Alessandro Garcia,
Rohit Gheyi, Baldoino Fonseca, Márcio Ribeiro, and Caio Barbosa, Daniel
Oliveira. 2020. How Does Incomplete Composite Refactoring Affect Internal
Quality Attributes?. In 28th International Conference on Program Compre-
hension (ICPC ’20), October 5–6, 2020, Seoul, Republic of Korea. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3387904.3389264

1 INTRODUCTION
Code refactoring [21] is one of the most popular techniques to
improve the internal code structure and, consequently, the com-
prehensibility of a program [21, 25]. Each single refactoring is an
instance of a refactoring type. Each type determines the changes
required to produce an expected enhancement of a certain code
structure [21]. Examples of popular refactoring types include Ex-
tract Method and Move Method [27, 37]. Like other types, they are
expected to contribute to fully remove poor code structures [5, 7],
such as code smells [20, 47].

However, given its fine-grained nature, a single refactoring rarely
suffices to assist developers in achieving their intents, e.g. to fully
remove a poor code structure [5, 7] such as code smells [20, 47]. The
removal of some code smells are considered highly relevant by de-
velopers and practitioners. This is the case of God Class and Feature

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea
A.C. Bibiano, V. Soares, D. Coutinho, E. Fernandes, J.L Correia, K. Santos,

A. Oliveira, A. Garcia, R. Gheyi, B.Fonseca, M. Ribeiro, C. Barbosa, D. Oliveira

Envy [23, 37, 39, 46] smells as they have a wide, harmful impact in
the program structure; both affect two or more classes.

Notwithstanding, previous studies have reported that single
refactorings often do not remove or even introduce these code
smells [4, 7]. Nevertheless, they provide little or no insight on a
wider and more complex phenomenon called composite refactor-
ing [5, 9, 38]. Composite refactoring occurs when two or more
interrelated single refactorings are applied on one or multiple code
elements [5, 18, 33, 38, 41]. This phenomenon happens frequently
in software projects [5, 27], and each set of interrelated single refac-
torings is called a composite.

Previous studies recommend specific patterns of composites to re-
move certain code smells [5, 21]. For example, Fowler recommends
the application of various Move Methods together to fully remove
aGod Class. However, empirical studies report that developers often
fall short in fully removing those code smells through composites.
Indeed, most composites either introduce or not fully remove code
smell instances [5]. This can be related to the fact that developers
often apply composites alongside other code changes [16, 27], and
frequently these composites are applied to perform development
activities that do not purely affect the code structure, e.g a feature
addition. Besides that, developers may not be applying the rec-
ommended composites to remove the code smells. The literature
suggests that developers fail in removing code smells because some
of the recommended refactorings are missing within the compos-
ites [5, 7]. The lack of one or more refactorings in a composite, to
remove a particular smell type, constitutes an incomplete composite
refactoring (shortly called incomplete composite). It is expected that
incomplete composites can gradually improve the internal structure
quality, improving also the program comprehension.

The existing refactoring tools offer little help in assisting the
completion of incomplete composites by providing the refactor-
ings needed to fully remove remaining code smells [24, 26, 40, 42].
Designing tools for providing such assistance requires proper em-
pirical investigation. This investigation includes characterizing the
most frequent types of incomplete composites applied to real pro-
grams. It also includes understanding how incomplete composites
gradually affect the internal quality attributes when compared to
code smells. The internal quality attributes are often used to detect
problematic microstructures of source code, which are known to
harm program comprehensibility [1, 8]. For example, increasing
code complexity is highly related to low program comprehensibility.
However, previous studies on composites in real projects did not
investigate the effect of incomplete composites on internal quality
attributes [5, 6].

Based on these limitations, this paper presents a quantitative
study aimed at addressing the aforementioned literature gap. Our
goal is to understand the most common incomplete composites and
how incomplete composite refactoring affects internal quality at-
tributes. We selected five software projects of different domains and
targeted 34 popular refactoring types [27, 37]. We then collected 353
(47%) incomplete composites for Feature Envy removal or God Class
removal. We then computed the frequency of incomplete compos-
ites according to the refactoring types constituting each composite.
We evaluated the effect of those incomplete composites on 11 code
metrics that are used to capture four internal quality attributes [8].

Hereafter we present our main findings and an overview of possible
implications:

1. Composites often affect the structure of two or more classes;
most of the incomplete composites with such a wide scope (82%)
are composed of multiple refactoring types. This observation con-
tradicts findings from recent studies [5, 6], which analyzed a much
smaller set of refactoring types than the one considered in our
study. Given the type heterogeneity and the wide scope of the
aforementioned composites, one could expect they would often
have a positive effect on multiple internal attributes, including the
cohesion and coupling of the affected classes. However, this sce-
nario was often not the case possibly because such heterogeneous
composites are hard to apply properly.

2. Incomplete composites with at least one Extract Method often
(71%) and without Move Methods are often the reason why Feature
Envies and God Classes are not resolved. These results may indicate
that the classes affected by such incomplete refactorings are likely
still hard to comprehend as the key underlying problem (i.e., lack
of separation of concerns) remains. In fact, we observed that most
of these cases did not result in coupling and cohesion improvement.
This implies that automated refactoring tools could be extended to
identify opportunities for recommending the completion of other-
wise harmful incomplete composites.

3. Most incomplete composites (58%) tend to not change the
internal quality attributes on smelly classes. In a way, one could
consider this fact problematic. However, this finding reveals that
despite the incomplete composites not fully removing code smells,
they maintain the structural internal quality of the affected classes.
At least, the incomplete nature of composites has possibly not
harmed even further the program comprehensibility and other
related quality attributes. This observation suggests that certain
developers may be keen to maintain the structural quality of their
programs through refactoring, even when they do not have the
explicit intent of doing so. Thus, they might also be open to receive
additional refactoring recommendations to help them improve the
program structure even further, while achieving their primary goals.
Recommender systems could be designed, then, to assist developers
in “completing” their composite refactorings, while also favoring
the achievement of their other goals.

2 BACKGROUND
This section presents the main concepts for this study. Program
refactoring is the process of performing changes that aim to improve
the internal code structure of a program [21]. The literature presents
catalogs of refactoring types [21], and an example of one refactoring
type is Extract Method, which is when a part of the source code is
extracted from an existing method to a new method.

2.1 Composite Refactoring (or Composite)
In the context of this work, a composite refactoring (or shortly, a
composite) consists of two or more interrelated single refactorings
applied by the same developer to one or more code elements. In
fact, Bibiano et. al. [5] have shown that interrelated single refactor-
ings usually are applied by the same developer [5]. The literature
presents some heuristics to identify composites. A recent study
proposed a range-based heuristic, in order to detect each composite

How Does Incomplete Composite Refactoring Affect Internal Quality Attributes? ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

formed by single refactorings that are structurally interrelated [38].
It groups single refactorings that have the following characteris-
tics: i) at least one code element was affected by all refactorings
in the composite, and; ii) they were applied by the same software
developer, and relies on the fact that composite refactorings often
have those two characteristics [5]. This heuristic is different from
the element-based heuristic proposed by another previous study [5].
The range-based heuristic captures the source and target classes to
which the single refactorings were applied in the composites. How-
ever, the element-based heuristic limits its scope to the source class
only. The range-based heuristic was designed according to develop-
ers’ practices, as a previous study [6] has shown that composites
are often applied to multiple classes.

2.2 Incomplete Composite Refactoring: A
Smell Removal Perspective

Recommended Composite Refactoring for Code Smell Re-
moval. The literature recommends the application of certain com-
posites to remove specific code smell types [5, 21]. Fowler [21]
recommended composites for code smells such as Feature Envy and
God Class. Also, Bibiano et al. [5] have presented recommendations
of composites for those code smells, observing that Fowler‘s sugges-
tions are not usually applied. They also found that developers often
combine the recommended refactoring types with other refactoring
types in composites to remove code smells. For example, to remove
Feature Envy, developers combined Extract Method, Move Method
and Move Attribute.

Incomplete Composite Refactoring for Code Smell Re-
moval. Bibiano et al. [5] observed that composites often failed
to remove code smells, especially Feature Envy and God Class. This
is expected because these code smells are regularly in classes in
which other code changes happen frequently, such as a feature ad-
dition [34, 44, 46], thus, making the removal of the code smell more
challenging. We call incomplete composite refactorings (or shortly
incomplete composites), composites that contain at least one recom-
mended refactoring type that is used to remove a particular code
smell, but failed to remove that code smell after its application. For
example, Fowler recommended composites consisting of Extract
Methods and Move Methods to remove Feature Envy [21]. In that
case, a composite is an incomplete composite if: (i) the composite
has at least one refactoring type is recommended to remove Feature
Envy [5, 21] (at least one Extract Method or one Move Method), and
(ii) the composite did not remove the Feature Envy.

2.3 Motivating Example
This section describes an example of an incomplete compos-
ite for Feature Envy removal in a real software project. Fig-
ure 1 presents an incomplete composite that was applied
in the commit 66fbd3202a [15] from the Dubbo project.
In this commit, the ServiceConfig class has an envi-
ous method called getExportedUrl. This method calls sev-
eral times methods of the AbstractInterfaceConfig and
the ReferenceConfig classes. Possibly aiming to solve
this, the developer applied a Move Attribute, moving
the url attribute to the ReferenceConfig class. Then,
the developer moved the envious getExportedUrl method

to the AbstractInterfaceConfig class. However, the
getExportedUrl method continues envious, because this
method has several calls to the ReferenceConfig class.

The developer applied a composite refactoring composed of one
Move Attribute, and one Move Method. This composite was applied
to a class that has an envious method (the getExportedUrl
method). However, this composite did not remove the Feature Envy
code smell completely, because this method continues to have calls
to ReferenceConfig. Previous studies presented recommenda-
tions of composites to remove this code smell [5, 7, 21].

This composite from the Dubbo project is an incomplete compos-
ite refactoring for this case of Feature Envy removal, because this
composite has at least one recommended refactoring type to remove
this code smell (the Move Method refactoring type by Fowler’s rec-
ommendation) [21], and yet this composite did not entirely remove
the code smell (see Section 2.2). The developer could have “com-
pleted” this composite applying more Extract Methods and Move
Methods on the getExportedUrl method.

Through this example, we observed the existing limitations on
the effect of incomplete composites on the internal structure qual-
ity. A recent study on the effect of composites was limited on
evaluating the effect of this example on the internal structure qual-
ity, because they only observed the effect on the code smell re-
moval [5]. This study would also have concluded that this com-
posite does not remove the code smell, however, this incomplete
composite has affected some code metrics that capture one or
more internal quality attributes, independently if the code smell
was not removed. For example, the number of lines of code in
the ServiceConfig has decreased, improving the coupling and
cohesion of this class. The code metrics related to the cohesion
and coupling in the ReferenceConfig and ServiceConfig
are not changed significantly. Thus, the incomplete composite re-
mains the internal structure quality of the ReferenceConfig
and ServiceConfig classes. This can be considered a positive
result on the effect of this incomplete composite because regardless
the non-removal of the Feature Envy, the incomplete composite
does not worsen the internal quality attributes of the classes.

This example motivates that existing studies offer a limited
knowledge on the effect of incomplete composites on internal
quality attributes.The existing refactoring tools provide little help
in assisting the completion of incomplete composites by provid-
ing those refactorings needed to fully remove remaining code
smells [24, 26, 40, 42]. Designing tools for providing such assis-
tance still requires further empirical investigation. This investiga-
tion includes characterizing the most frequent types of incomplete
composites applied to real programs. More importantly, it includes
understanding as to how incomplete composites gradually affect the
internal quality attributes when compared to code smells. Although
there are several works that study code smells [10, 22, 29–32, 45],
which are intrinsically based on these internal attributes, they do
not address the association of such smells and attributes with in-
complete refactoring.

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea
A.C. Bibiano, V. Soares, D. Coutinho, E. Fernandes, J.L Correia, K. Santos,

A. Oliveira, A. Garcia, R. Gheyi, B.Fonseca, M. Ribeiro, C. Barbosa, D. Oliveira

Figure 1: Incomplete composite for Feature Envy removal

3 STUDY SETTINGS
This section summarizes our empirical study settings as fol-
lows. Our companion research website provides the study arti-
facts for the complementary information: https://researcher-icpc-
104.github.io/icpc2020_incomplete_composite.

3.1 Goal and Research Questions
Our study goal is based on the GQM methodology [3] to analyze
incomplete composite refactorings applied to software projects by
their developers; for the purpose of revealing the effect of incomplete
composites on internal quality attributes; with respect to i) the most
common compositions of single refactorings that constitute each
incomplete composite instance, and ii) how frequently incomplete
composites either improve, do not affect, or worsen each internal
quality attribute; in the context of the life cycle of five Java open
source software projects with active code refactoring practices. We
carefully designed two ResearchQuestions (RQs) aimed at achieving
our study goal.

RQ1:What are the most common incomplete composites applied in
real programs? The literature reports that many types of composites
can support the removal of the same particular smell type [5, 7, 21].
However, the literature related to the characterization of incomplete
composites is scarce (Section 2). Thus, one needs to investigate and
characterize recurring incomplete composites which, albeit they
may often fail to remove a certain smell type, have the potential to
remove it if complemented with other single refactorings. By doing
so, we can understand how varied and frequent the manifestation
of incomplete composites is in practice. Along with this, we also
expect to reveal, even if partially, the required support for the
completion of these composites, thus enabling the complete removal
of the targeted smells. The results of this RQ may reveal common
practices of composite refactoring that are likely to: (i) hamper full
smell removals, or (ii) gradually improve the internal structural
quality.

RQ2: How does incomplete composite refactoring affect internal
quality attributes? Most strategies for detecting code smells rely on
the combination of code metrics [17], which capture the current
state of various internal quality attributes. Thus, the degradation

of these values may imply a degradation in the code’s quality it-
self. Some early studies [4, 7] have already attempted to under-
stand the effect of refactorings on code smells. However, due to
the fine-grained code change caused by each single refactoring, it
was expected that single refactorings rarely suffice to fully remove
code smells [4]. Certain smell types, e.g. God Class, are too coarse-
grained to be removed with a single refactoring, e.g. Extract Method.
Surprisingly, a recent study [5] shows that, much like single refac-
torings, composite refactorings also rarely remove their targeted
code smells.

Therefore, recent studies [1, 8] shifted from code smells to a more
fine-grained perspective: internal quality attributes. These studies
concluded that, although single refactorings rarely remove code
smells, they can still have a positive effect on the internal quality at-
tributes. For instance, Extract Method reduces the class’ complexity,
which is considered improvements. Nevertheless, no previous work
has assessed the effect of composite refactorings on internal quality
attributes. Thus, the answers to this research question can reveal
if incomplete composites gradually improve the internal structure
quality as expected, and what incomplete composites usually affect
each internal quality attribute. These observations can generate
insights for future studies and help designers of existing refactoring
tools on improving their approaches for the removal of code smells
and the improvement of internal quality attributes, based on real
development practices.

3.2 Study Steps
Figure 2 illustrates our six study steps. We describe below each
study step.

Figure 2: Study steps

Step 1: Software Project Selection – We relied on previous
studies [1, 5–8, 37, 38] to derive three criteria for selecting soft-
ware projects for analysis. (i) The software project must be
open source and implemented using the Java programming lan-
guage. Java is one of the most popular languages worldwide
(https://www.tiobe.com/tiobe-index/). Open source projects were
selected to support the study replication. (ii): The software project
must use Git as the main version control system. This criterion
aimed at supporting the use of state-of-the-art tools for refactoring
detection that work on Git projects only. (iii) The software project
must have been analyzed by one or more related studies regard-
ing the refactoring [6, 8] and code smells [5, 7]. Thus, we could
select projects that are known to have a considerable amount of
refactorings and smell instances.

Step 2: Single Refactoring Detection – We used the RMiner tool
for detecting single refactorings applied to each software project [1,
5, 7, 8] and this tool is available for the study replication. A recent

How Does Incomplete Composite Refactoring Affect Internal Quality Attributes? ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

study presents that this tool presents a very high precision (98%)
with a recall of (87%) [43]. We investigated 34 of the refactoring
types detectable by the tool, by prioritizing the refactoring types
related to our study scope. The complete list of the investigated
refactoring types is available on our web site.

Step 3: Composite Refactoring Computation – We collected the
composites using the range-based heuristic discussed in Section 2.1.
This heuristic allowed us to analyze the composite refactoring effect
encompassing from the source class to the target class associated
with each single refactoring. Thus, we could identify those cases
in which a smell instance was simply moved from one class to
another rather than actually removed from the source code, and
how the internal quality attributes are affected among these classes.
Besides that, this heuristic is more conservative when capturing
single refactorings that were applied on code elements that have
interrelated code structures [38]. Thus, the composites detected by
the range-based heuristic are more likely to encompass compos-
ites applied to remove a code smell that involved multiple classes.
Therefore, this decision partially reduces the threat that composites
may not have been applied with the intent of removing code smells.

Step 4: Code Smell Detection – We selected two code smell
types: Feature Envy and God Class (as described in Table 2). These
types were selected because the recommended composite refac-
torings for their removal is already known [5, 21]. They are also
code smells that involve multiple classes, and can be related to
various internal quality attributes such as cohesion and coupling.
Thus, the incomplete composites applied on classes that have these
smells (smelly classes) may have an effect on these internal quality
attributes. Besides that, the range-based heuristic motivated us to
investigate the effect of incomplete composites on code smells that
also usually involve multiple classes. Moreover, previous studies
have also investigated the effect of refactoring on these types of
code smells [5, 7]. In terms of the tool used to detect these code
smells, we selected the Organic tool [29, 30, 45], which uses strate-
gies based on software metrics to collect the smells. This tool was
selected due to its detection strategies, that use the code metrics
we analyzed for evaluating the effect of incomplete composites.
In addition, these detection strategies were already evaluated by
previous studies [7, 19, 28].

Step 5: Internal Quality Attribute Computation – Table 1 presents
the 11 code metrics [1, 8] that were investigated in this study. The
columns present, respectively, the internal quality attributes related
to each metric, the code metrics are collected, and their descriptions.
These code metrics were selected due to them having been already
evaluated for another study [8] for analyzing the effects of single
refactorings on internal quality attributes. Thus, these code metrics
can reveal the effect of incomplete composites on these internal
quality attributes for the classes in which these incomplete compos-
ites were applied, because these codemetrics are of class-level scope.
We chose to perform the analysis in a class-level scope due to a re-
cent study about the effect of composites on code smells presenting
that composites are often applied at class level [5]. We then aimed
to analyze the effect of composites on internal quality attributes for
each class in which a composite was applied. We used an automated
tool called SciTools Understand (https://scitools.com/) to collect
these code metrics, as this tool also is used by other studies about
refactoring and internal quality attributes [7, 8].

Table 1: Code Metrics by Internal Quality Attributes

Internal Quality Attribute Code Metric Description

Cohesion LCOM2
Number of pairs of methods that do not share
attributes, minus the number of pairs of methods
that share attributes

Coupling CBO The number of classes to which a class is coupled
MAxNEST Maximum nesting level of control constructs

CC Measure of the complexity of a module’s decision
structureComplexity

WMC The sum of Cyclomatic Complexity
of all methods declared in the given class

LOC The number of lines of code in the class
excluding whitespaces and comments

CLOC Number of lines in the class containing code comments
STMTC Number of statements in the class’s code
NIV Number of instance variables in the class

Size

NIM Number of instance methods in the class

Step 6: Incomplete Composite Computation – We investigated
the incomplete composites for the Feature Envy removal and God
Class removal. For this study, a composite was considered incom-
plete according to the following criteria: (i) composites that have at
least one refactoring type that is recommended to remove a Feature
Envy or a God Class [5, 21], and (ii) composites that did not remove
a Feature Envy and aGod Class. We have filtered the incomplete com-
posites through composites that have at least one Extract Method or
oneMove Method (refactoring types recommended to remove these
code smells). These composites are the candidates (Candidate is a
composite that have at least one Extract Method or Move Method.)
of incomplete composite. We then elaborated Table 2 that presents
the recommended composites for Feature Envy and God Class re-
moval according to the literature, the code smell type and their
description, and the incomplete composites for each recommended
composites.

Table 2: Inc. Comp. for Feature Envy andGodClass Removal

Recommended
Composite Code Smell Description Incomplete

Composite
Extract Method{n}
Move Method{n}Extract Methods and

Move Methods [5] [21] Feature Envy A method more interested
in other class(es) Extract Method{n}, Move Method{n}

Move Methods [21] God Class A class that implements too
many software features Move Methods{n}

4 DATASET OVERVIEW
This section presents an overview of our dataset of incomplete
composites.

4.1 Incomplete Composite Dataset
Our dataset provides 23,797 single refactorings, and 2,903 com-
posite refactorings collected from five software projects. Table 3
summarizes our data on these software projects. The columns show
the software project’s name, followed by the number of commits,
classes, candidates of incomplete composite and incomplete com-
posites for each software project. Notably, these projects present
diversity about domains, the number of commits, and the num-
ber of classes. It is relevant since it allows for an investigation of
the incomplete composite practices applied to software projects
with different sizes and domains. We then found 747 candidates
of incomplete composites, of which 353 (47%) are incomplete com-
posites. Our data shows that 276 (78.19%) incomplete composites
were applied to classes that have at least one Feature Envy, while

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea
A.C. Bibiano, V. Soares, D. Coutinho, E. Fernandes, J.L Correia, K. Santos,

A. Oliveira, A. Garcia, R. Gheyi, B.Fonseca, M. Ribeiro, C. Barbosa, D. Oliveira

Table 3: General Data Analyzed in this Study

Software Project Commits Classes Cand. Inc.
Comp.

Inc. Comp.

couchbase-java-client 1,023 656 34 10
dubbo 3,961 1,971 202 94
fresco 2,207 994 115 47
jgit 7,513 1566 264 156
okhttp 4,319 167 132 46
Total 19,023 5,354 747 353

81 (22.95%) incomplete composites were used on God Classes. Note
that, an incomplete composite can have been applied to a class that
is a God Class and also it has Feature Envies.

4.2 Dataset Validation
We performed two manual validations with developers for our
dataset, which helped us check if our identification of incomplete
composites was correct, and understand the context of these incom-
plete composites.

First validation. We performed a manual validation with nine
developers not associated with the implementation of the incom-
plete composites. Their development experience varied from two
to five years. Due to the time limitations of the developers, they
evaluated only 30 composites. These composites were randomly se-
lected, where we presented 26 composites that could be incomplete
composites for Feature Envy removal and 4 composites that could
be incomplete composites for God Class removal.

We asked developers if: (i) the composites were incomplete com-
posites; and; (ii) what were the development activities done while
the composite was applied. This final question allowed us to mit-
igate composites not applied for code smell removal. To answer
those questions, developers evaluated classes and commits before
and after of each composite was applied.

They pointed that 13 (50%) out of 26 incomplete composites were
for Feature Envy removal, 7 (27%) out of 26 composites were not
incomplete composites for Feature Envy removal, developers did
not find the classes of six composites (23%) of them. For God Class
removal, all composites were confirmed incomplete composites.
Therefore, 17 (56%) out of 30 incomplete composites were confirmed
by the manual process.

On the intents of developers during the application of the com-
posites, we concluded through commit messages [33] and code
changes, that developers applied changes in which: 7 (41%) out of
17 were applied with the intent of refactoring only; 3 (18%) com-
posites had the intents of a feature addition and refactoring; 6 (35%)
were applied for a feature addition only, and; 1 (6.5%) was applied
for a bug fix only. We observed that 10 (59%) out of 17 incomplete
composites were applied in commits in which developers explicitly
mentioned the intent of refactoring. This suggests that these com-
posites may have been applied to remove a code smell, and they
were incomplete to remove them. These results also allowed us to
measure that a significant percentage of the composites in our data
set might truly be incomplete composites.

Second validation. In the second step of the validation, we
aimed to ask developers related to the implementation and applica-
tion of the incomplete composites. At first, we submitted three pull
requests to validate if the composites are incomplete composites
for the Feature Envy removal [12–14]. They were submitted one

month after that the incomplete composites were applied. It would
be easier for developers to remember which and why the incom-
plete composites were applied. Currently, one pull request was
accepted, while the two other pull requests are open. The accepted
pull request improved the code structure by removing an instance
of Feature Envy from the Dubbo project. The developer answered
that our composite recommendation caused the code to become
clearer, the developer told: “Hi, thanks. I think this patch makes the
code cleaner."

5 COMMON INCOMPLETE COMPOSITES
This section answers our RQ1 on most common incomplete com-
posites across software projects.

5.1 Procedures
We collected the frequency of each incomplete composite for Fea-
ture Envy and for God Class removal. We counted the incomplete
composites according to their compositions, though we did not con-
sider the order of the single refactorings in each composite, since a
recent study observed that incomplete composites often are applied
in the single commit [5] and, in the context of a single commit, it
is not possible to know the order of the single refactorings. We
then created a ranking for the frequency of each composition of
incomplete composites for each project, regardless of the order of
single refactorings in composites.

5.2 Results
Most of the incomplete composites were common to all analyzed
projects. Thus, we created a ranking of the incomplete compos-
ites for all software projects. Table 4 presents a ranking of the 5
most common incomplete composites across projects. The first
column indicates the position of the incomplete composite in the
frequency-based ranking. The second column then presents the
single refactorings that compose each incomplete composite. The
last column presents the frequency of each incomplete composite.

Our results show that incomplete composites with only Extract
Methods were the most common for all software projects. We ob-
served that developers applied 30 (8.50%) out of 353 incomplete
composites with only two Extract Methods, while 23 (6.51%) out of
353 incomplete composites had three or more Extract Methods. Thus,
53 (15.01%) out of 353 incomplete composites had only method ex-
traction. Based on that, we grouped the incomplete composites
based on frequent compositions, and by compositions that can be
strongly related to a common proposal. For instance, incomplete
composites containing only Extract Methods are in one group be-
cause developers certainly aim to extract methods only, it can be
to remove a code smell or improve the cohesion between meth-
ods, while incomplete composites containing at least one Extract
Method and one Move Method were grouped in another group be-
cause developers aim to improve the coupling and cohesion on
multiple classes, Extract Methods and unusual refactoring types
were grouped because it can indicate that developers can be inter-
ested to apply other code changes that are not strictly related to
the code structure improvements. In total, we found seven groups
of common compositions of incomplete composites.

How Does Incomplete Composite Refactoring Affect Internal Quality Attributes? ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

Grouping of Incomplete Composites. Table 5 presents the
groups of incomplete composites across the software projects. The
first group, 𝐺1, is composed by composites that contain at least
one Extract Method and one single Rename refactoring: Rename
Parameter, Rename Variable, Rename Attribute, Rename Method or
Rename Class. 𝐺2, the second group, is composed by composites
that contained Extract Methods and unusual refactoring types.𝐺3
is composed by composites that contained only Extract Methods, as
previously discussed. 𝐺4 has composites that contained all refac-
toring types except for Extract Methods and Move Methods. 𝐺5 is
composed by incomplete composites that have at last one Extract
Method and one Move Method. 𝐺6 consists of incomplete compos-
ites that have at least one Move Method, but do not have Extract
Methods. Finally, 𝐺7 has incomplete composites that are composed
by only Move Methods.

Considering the incomplete composites in all groups, our first
finding is that 291 (82.44%) out of 353 incomplete composites have
more than one refactoring type. This result is different from an
existing study about composites since this previous study has re-
ported that incomplete composites are often composed of a single
refactoring type [5], and another study only investigated refactor-
ing types of the method-scope [6]. Our results are different because
they analyzed a much smaller set of refactoring types than the one
considered in our study. Given the type heterogeneity and the wide
scope of the aforementioned composites, one could expect they
would often have a positive effect on multiple internal attributes,
including the cohesion and coupling of the affected classes

Finding 1: Incomplete composites often have more than one
refactoring type. It implies that existing refactoring recom-
mendation systems may support more refactoring types that
are not commonly investigated by previous studies.

Analysis of the Groups of Incomplete Composites.We ob-
served that the composites in 𝐺1 – Extract Methods and Renames
– were the ones applied most often by developers in composites,
not in isolation as reported by previous studies [7, 37]. Also, this
group was often applied to smelly classes with at least one Feature
Envy or a God Class, but these code smells were not removed by
these refactorings. This is an interesting result because it presented
that, on smelly classes, developers often extract methods and apply
several renames in composites, potentially to improve code compre-
hension in these classes to some extent, but not fully remove code
smells. In groups 𝐺1 and 𝐺3, it is expected that developers were to
improve the cohesion of the class, since developers are separating
the code in different methods, regardless of the removal of Feature
Envy or God Class.

Surprisingly, incomplete composites composed by at least one Ex-
tract Method are often (71%) applied withoutMove Methods (groups
𝐺1, 𝐺2, and 𝐺3). One such reason for this would be that develop-
ers may be reluctant to move methods if they do not know which
class(es) in the program should receive the moved method(s). This
result suggests that the lack of Move Methods in incomplete com-
posites that have Extract Methods can be related to code smells that
were not removed. It can also suggest that if Extract Methods were
applied with Move Methods in composites, they would be able to
remove code smells. Developers may be reluctant to move methods

if they do not know (or need to spend time) which class(es) in the
program should receive the moved methods.

Finding 2: Incomplete composites with at least one Extract
Method are often (71%) applied without Move Methods on
smelly classes. This implies that automated refactoring tools
could be extended to identify opportunities for recommending
the completion of incomplete composites with extractions,
mainly.

In 𝐺5, we observed that Extract Methods and Move Methods are
not often applied together in incomplete composites. It can suggest
that composites with these two refactoring types could have suc-
cessfully removed Feature Envies and God Classes. We noticed that
developers did not apply the necessary amount of Extract Methods
andMove Methods for the removal of the code smells. However, it is
expected that developers improve cohesion and coupling through
these incomplete composites, since they are separating methods
and moving it to other classes.

Even though Move Method is a common refactoring type [37],
𝐺7 was not often applied in incomplete composites, representing
less than 2% of the incomplete composites. Developers have mostly
applied Move Methods with other refactoring types. Thus the ex-
isting recommendations composed of using only Move Methods to
remove God Classes are not applied in practice. With this result, we
suggested that future studies might recommend composites that
have more than one refactoring type for the removal of this smell.
On the context of internal quality attributes, it is expected for these
Move Methods to improve the cohesion and coupling, since they
are moving methods and decreasing the dependency between the
classes.

Table 4: Five Most Common Incomplete Composites

Rank Incomplete Composite Frequency
1 {Extract Method, Extract Method} 30 (8.50%)
2 {Extract Method, Extract Method, Extract Method} 12 (3.40%)
3 {Extract Variable, Extract Method} 8 (2.27%)
4 {Rename Variable, Extract Method} 8 (2.27%)
5 {Rename Parameter, Extract Method} 5 (1.42%)

Total 63 (17.86%)

Table 5: Groups of Incomplete Composites Across Projects

Id Groups Frequency
𝐺1 Extract Method and Rename 145 (41.07%)
𝐺2 Extract Method and Unusual Refactoring Types 53 (15.01%)
𝐺3 Extract Method 53 (15.01%)
𝐺4 Other types 52 (14.73%)
𝐺5 Extract Method and Move Method 26 (7.37%)
𝐺6 Move Method and Other types 18 (5.10%)
𝐺7 Move Method 6 (1.70%)
Total 353 (100.00%)

6 EFFECT OF INCOMPLETE COMPOSITES
This section answers our RQ2 on the effect of incomplete composites
on internal quality attributes.

6.1 Procedures
We classified the effect of incomplete composites on the internal
quality attributes as (i) positive, (ii) neutral, and (iii) negative. This

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea
A.C. Bibiano, V. Soares, D. Coutinho, E. Fernandes, J.L Correia, K. Santos,

A. Oliveira, A. Garcia, R. Gheyi, B.Fonseca, M. Ribeiro, C. Barbosa, D. Oliveira

classification also appears in previous studies [1, 2, 8, 11] as a com-
prehensive mechanism to capture the overall refactoring effect
on internal quality attributes. This classification relies on three
premises. First, each code metric (associated with a particular at-
tribute) can either increase, be unaffected, or decrease after the
refactoring application. Second, certain code metrics improve when
their values decrease (e.g., CBO), while others improve when their
values increase (e.g. TCC). Third, an internal quality attribute im-
proves when the code metrics that capture this attribute improve as
well; the attribute worsens when the corresponding metrics worsen.
Similarly, we consider that: (i) an incomplete composite has a posi-
tive effect when at least one code metric that captures an internal
quality attribute has improved; (ii) a neutral effect when none of
the code metrics that capture the attribute have changed, and; (iii)
a negative effect occurs in the other remaining cases.

Then, we aimed to combine the incomplete composite data with
the collected code metrics to detect the former’s impact on the
latter. For that purpose, we designed and executed a set of three
steps, tailored for accuracy in that detection, described as follows:

1. Collecting metric thresholds from significant time peri-
ods in the projects’ development. To determine a baseline for
comparing the classes’ code metrics to, in order to ascertain if they
may contain a problematic structure due to the values of the mea-
sured metrics, we collected metric thresholds from significant time
periods in the project. We started with yearly thresholds, but fur-
ther analysis proved that the changes between consecutive years
were too significant, so we narrowed it down to 6-month periods.

These "significant changes" were defined as changes that mod-
ified over 25% of a metric’s value in two or more internal quality
attributes, for higher or lower, except for Size (due to the tendency
of Size changing frequently with code changes [27, 35]). These
thresholds were defined based on quartiles, with a metric with val-
ues within the 25% smallest values (𝑄1) being considered good, a
metric between the 25% smallest and 25% largest values (𝑄2 and
𝑄3) being considered average, and a metric within the 25% largest
values (𝑄4) being considered problematic, except for the CLOC met-
ric, of which definitions are inverted, due to its nature of higher
values meaning an improvement [8].

2. Defining the frequency of significant changes to code
metrics. We then attempted to determine their impact, by ana-
lyzing how incomplete composites affected the refactored classes,
using the following criteria: (i) each analysis looked at the metrics
in two states: the commit immediately before the composite and the
last commit in the composite; (ii) a significant change was defined
in the sameway as in 1., i.e., a change was considered significant if it
caused a variance of over 25%. Thus, to understand the composites’
impact, looked at how each composite changed the classes they
affected, by analyzing each of the affected class’s metrics before
and after such composites.

3. Defining the state of the classes’ metrics related to their
changes. To analyze the quality of the code in the classes affected
by the composites (before and after their application), we compared
their metrics to the thresholds defined in step 1, thus defining the
class as problematic, average or good in terms of their metrics’ values.
With this, and with the information from step 1, it is possible to
determine if the composites caused an improvement, did not affect
a class or worsened its state.

6.2 Results
Table 6 displays a summarized comparison of the before-after states
of the classes in the project, by presenting, for each internal quality
attribute (Cohesion, Coupling, Complexity, Size), the % of individual
metrics changed for the better (i.e., had their values reduced, except
for CLOC), that changed for the worse, or that did not change for
each composite.

By analyzing each composite individually, we determined that
out of 416 composites that only modified a class’s contents (i.e.,
did not delete nor rename the original class), 58% (239) changed no
metric to a value within a threshold different than the one they were
before the composite; 22% (92) only increased the metrics’ values
to a higher threshold, 13% (55) only decreased the metrics’ values
to a lower threshold, and 7% (30) both increased and decreased
the metrics’ values to higher and lower thresholds, respectively.
However, out of those that did change one or more metrics’ values
to different thresholds, over half only changed a single metric’s
value enough to change its threshold.

Thus, this analysis’ results can be summarized as follows: in a
general sense, the majority (58%) of changes tended to keep the
metric within the same threshold as it was before the composite.
Most changes that did impact the metrics caused an increase in
their values, which, in most cases, causes a negative impact in the
resulting source code. Third, most changes that did impact the
metrics mostly impacted only a single metric at a time. Fourth, the
majority of times a positive change happened in the code, it was
because of an increase in the amount of CLOC (Comment Lines
of Code). This means that, while the quality might have improved,
the actual smells were either not fixed or even subtly ameliorated
by the composites; Thus, this can be summarized in the following
finding, which corroborates with a similar one found by a previous
work [7] for single refactorings:

Finding 3: Most incomplete composites tend to not change
the state of the code structure, with respect to its internal
attributes – i.e. well-maintained code often remains well-
maintained, while smelly code often remains smelly. This may
motivate refactoring tools to improve their recommendations
to maintain the internal structural quality of the program in
composites that do not successfully remove code smells.

Nonetheless, by taking a closer look at the absolute values of
the metrics changed by each incomplete composite, we discovered
that over half of their changes (52%) worsened at least one of the
internal quality attributes’ metrics. The majority of this worsening,
however, was related to size metrics. Out of the other changes, 27%
did not change metrics’ values at all, and 21% improved their values.

However, by looking at the intensity of these changes, it is pos-
sible to see that 70% did not significantly increase or decrease the
quality of the code (>25% change in the measurements), while
a small, but still significant, set of incomplete composites signifi-
cantly increased the internal quality attributes’ measurements (22%),
which in most cases, indicates a decrease in the code quality, and a
very small amount of incomplete composites actually significantly
decreased these metrics (8%). This means that, even if some of the
composites tended to modify the values of the internal quality at-
tributes’ metrics, they did so in small increments. This confirms the

How Does Incomplete Composite Refactoring Affect Internal Quality Attributes? ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

result discussed in the Section 5.2, which shows that incomplete
composites have often not improved the program comprehension
significantly. We also observed that the majority of those that do
make significant changes tend to worsen these attributes. But, as a
major finding, we concluded that:

Finding 4: The majority of incomplete composite refactor-
ings tend to not make significant changes to the class-level
internal quality attributes of the code. This indicates that de-
velopers often apply composites to minimally maintain the
level of structural quality while achieving their other primary
goals. Existing refactoring recommenders could make devel-
opers aware on how to apply (complete) composites while
also facilitating their goal achievements.

This finding contradicts previous works (e.g. [4]) that did not
find a relation between refactorings and the values of different
metrics. This could be caused by the fact that they only analyzed
single refactorings or due to their analysis focusing on a single
metric at a time instead of looking at the internal quality attributes.

We then analyzed the effects of incomplete composites in terms
of the groups presented in Section 5. For that purpose, we chose
the 4 most common groups that contain refactorings recommended
by the literature to remove Feature Envy and God Class. Therefore,
groups G1, G3, G5 and G7 were chosen as they only contain Extract
Methods, Move Methods and Renames (renaming is not necessarily
recommended to remove these code smells, but is recommended
when a method is extracted). This was done in an attempt to miti-
gate the threat of analyzing composites that were not intentionally
applied to remove those smells. In the composites pertaining to
those groups, developers only applied refactoring types that are
recommended to remove them, thus, reducing the likelihood of the
composite not being applied for that purpose.

Therefore, Figure 3 presents the effects of these groups on the
four internal quality attributes. We can observe that, once again,
size-related metrics are the ones that change the most with incom-
plete composites, followed by complexity metrics. It is also notable
that: (i) composites in𝐺7 (onlyMove Methods) often fail to improve
code metrics; (ii) no composite in𝐺3 (only Extract Methods) changed
coupling-related metrics and; (iii) 𝐺5 (Extract and Move Method)
had the most overall improvement in their composites. This is in
accordance to the discussion presented in Section 5.2, in which it
was speculated that several extractions and renames (the group𝐺1)
in composites should have reduced the code complexity, improving
the program comprehension. Besides that, the positive results of the
𝐺3 group then confirmed that when developers apply Extract Meth-
ods and Move Methods in composites, they often improve the most
internal quality attributes, and thus the program comprehension,
regardless of the presence of smelly classes.

Finally, by correlating these findings to the fact that these incom-
plete composites are composed by single refactorings that were
also frequently applied alongside other code changes, keeping the
non-size related metrics within acceptable parameters can be con-
sidered a good effort in preventing code quality decay, since feature
additions and other non-refactoring related changes might have
happened in the code (due to the majority of the worsened met-
rics being size-related). Thus, by keeping the code quality from

decreasing due to those other changes, some of these incomplete
composites could have acted as preventive measures, not allowing
code quality to degrade because of these new additions. This can
be summarized as the following finding:

Finding 5: Incomplete composites rarely increase or de-
crease code quality, but, when performed alongside other
code changes, they can prevent the quality decay that could
happen because of these additions. This implies that even
throughout the application of incomplete composites, the de-
velopers are putting effort into attempting to increase the
code structures’ quality.

This strengthens the conclusion that, even though incomplete
composites aim to improve the internal structure quality of certain
code elements, they do not bring about significant changes to the
smelly class’ state, by mostly keeping it in the same state as it was
before the composite – though they domostly prevent quality decay
from other non-refactoring changes, much like what was described
in Section 2.3. However, a non-insignificant percentage of incom-
plete composites actually worsens the affected class’s problems,
which could be solved by the completion of the used composite.

Figure 3: % of positive changes in IQA per Inc. Comp. Group

7 THREATS TO VALIDITY
Construct and Internal Validity: We reused criteria for select-
ing software projects from previous studies [5–8, 37]. We aimed at
preventing a biased project selection that could favor our study
results. We used RMiner [43] to perform single refactoring detection,
since it has a high accuracy. Similarly to previous studies [5, 7, 8],
we performed code metric computation via the SciTools Understand
tool that computes class-level code metrics that capture the four
internal quality attributes analyzed in this study (Table 1). Inspired
by the literature [7, 28], we used the Organic tool to detect code
smell instances. The smell detection strategies used by this tool have
a high accuracy: 72% precision and 81% recall in average [4]. We
validated the associated smell instances of Feature Envy and God
Class (Section 4.2). By doing that, we confirmed the tool’s accuracy.

We reused an heuristic from the literature [38] for detecting
composite refactorings. By reusing this heuristic, we could prevent
manual biases while supporting large-scale composite computation.
We could also analyze the effect on internal quality attributes in a

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea
A.C. Bibiano, V. Soares, D. Coutinho, E. Fernandes, J.L Correia, K. Santos,

A. Oliveira, A. Garcia, R. Gheyi, B.Fonseca, M. Ribeiro, C. Barbosa, D. Oliveira

Table 6: % of changes which significantly improved each metric for each the four internal quality attributes, per project

Project # of Composites Cohesion: 1 metric Coupling: 1 metric Complexity: 4 metrics Size: 9 metrics
Positive Neutral Negative Positive Neutral Negative Positive Neutral Negative Positive Neutral Negative

couchbase-java-core 10 10% 90% 0% 0% 100% 0% 2% 96% 2% 4% 96% 0%
dubbo 122 5% 90% 5% 4% 94% 2% 6% 90% 4% 4% 92% 4%
fresco 50 10% 88% 2% 2% 98% 0% 5% 91% 4% 2% 97% 1%
jgit 178 6% 92% 2% 4% 93% 3% 3% 93% 4% 6% 92% 2%
okhttp 56 7% 90% 3% 4% 94% 2% 2% 94% 4% 1% 96% 3%

wide scope ranging from the source class to the target class of each
refactoring. We carefully designed an heuristic for characterizing
those incomplete composites [22, 38]. The definition of incomplete
composite is considerably subjective, once it depended on our body
of knowledge on what composites target a particular smell type.
Although there is such subjectivity, we strongly relied on Fowler’s
refactoring catalog [21] and empirical evidence derived from recent
studies, e.g. [5, 7]. One author wrote scripts for computing incom-
plete composites, and two authors double-checked these scripts,
thereby reducing the manual bias and errors.

A previous study presented that developers do not necessarily
consider a code smell like a problem in the source code [36]. Thus,
we can assume that developers often do not have the explicit intent
to remove code smell when applying composites to be a threat
to this work’s soundness. To mitigate it, then, we submitted pull
requests and performed a manual validation aimed to determine
the developers’ intent to apply composites. The manual validation
of the composites and incomplete composites (Section 4.2) was
performed by developers that are familiar with refactoring. This
was important for demonstrating the accuracy of our heuristics
and the meaningfulness of our set of incomplete composites, from
the perspective of experienced developers [10, 32]. The validated
sample of composites is quite small, but we distributed this sample
between nine developers for a careful analysis.

Conclusion and External Validity: We reused a three-fold
classification of the refactoring effect on internal quality attributes
from previous studies [1, 8] (Section 6.1). We assumed that this
classification could be successfully adapted to the context of incom-
plete composites. One could criticize our approach that classifies an
incomplete composite as positive when it improves at least one asso-
ciated code metric is too loose. However, a recent study [8] showed
no considerable difference between this approach and stricter ones,
such as considering the improvement of most metrics as a positive
effect. Besides that, a study [8] used this approach to investigate the
effect of single refactoring on internal quality attributes. We then
reused this approach to compare the results of single refactoring
with the results of composites.

We applied traditional techniques of descriptive analysis on
the quantitative data [1, 5–8]. We computed percentages of the
most common refactoring combinations that constitute incomplete
composites (RQ1) as well as the effect classification of incomplete
composites (RQ2). These techniques allowed us a detailed compre-
hension of the incomplete composites’ effects in different scenarios.
For classifying thse effects, we relied on quartiles, as discussed in
Section 6.1, similarly to related studies [1, 8].

Regarding RQ1, we were unable to compute the order of the
refactorings within a composite. There is empirical evidence that

most composites are fully applied in a single commit, so we cannot
assure the precedence of one refactoring over another refactoring.
This limitation has also affected previous studies [5, 38] but they
still did not prevent interesting insights of the effects of refactoring
on internal quality attributes from being derived. With respect
to RQ2, previous studies [7, 8] show that single refactorings are
very often applied alongside other types of code change. The same
reasoning applies by extension to composite refactorings.

The scope of our study is quite limited for allowing a wide gen-
eralization of our findings and their implications. Although we
aimed at a certain diversity in terms of project size and commit
history (Table 3). Our preference for open source Java projects may
support the study’s replication, but they may not cover all refac-
toring practices worldwide. Nevertheless, these projects have been
successfully analyzed by related studies [1, 5–8].

8 CONCLUSION
This paper presents a quantitative study, in which we investigated
the incomplete composites in-depth in five software projects of
different domains. Our findings reveal that developers often (58%)
apply composites to minimally maintain the level of structural
quality while achieving their other primary goals. It implies that
automated refactoring tools could be extended to identify oppor-
tunities for recommending the completion of otherwise harmful
incomplete composites. As future works, we aim (i) to investigate
the incomplete composites for the removal of more code smells, (ii)
to classify manually more incomplete composites that are applied
only with the development activity of refactoring and incomplete
composites that are applied for other development activities, and
(iii) to evaluate if composites with the recommended refactoring
types have removed the code smells.

ACKNOWLEDGEMENTS
This study was in part financed by CNPq (434969/2018-4),
(427787/2018-1), (409536/2017-2), and (312149/2016-6), CAPES
(175956), and FAPERJ (22520-7/2016).

REFERENCES
[1] Eman AlOmar, Mohamed Mkaouer, Ali Ouni, and Marouane Kessentini. 2019.

On the impact of refactoring on the relationship between quality attributes and
design metrics. In 13th ESEM (2019). 1–11.

[2] Mohammad Alshayeb. 2009. Empirical investigation of refactoring effect on
software quality. IST (2009) 51, 9 (2009), 1319–1326.

[3] Victor Basili and Dieter Rombach. 1988. The TAME project: Towards
improvement-oriented software environments. TSE (1988) 14, 6 (1988), 758–
773.

[4] Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, and
Fabio Palomba. 2015. An experimental investigation on the innate relationship
between quality and refactoring. JSS (2015) 107 (2015), 1–14.

How Does Incomplete Composite Refactoring Affect Internal Quality Attributes? ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

[5] Ana Carla Bibiano, Eduardo Fernandes, Daniel Oliveira, Alessandro Garcia, Mar-
cos Kalinowski, Baldoino Fonseca, Roberto Oliveira, Anderson Oliveira, and
Diego Cedrim. 2019. A quantitative study on characteristics and effect of batch
refactoring on code smells. In 13th ESEM (2019). 1–11.

[6] Aline Brito, Andre Hora, and Marco Tulio Valente. 2019. Refactoring graphs:
Assessing refactoring over time. In 26th SANER (2019). 504–507.

[7] Diego Cedrim, Alessandro Garcia, Melina Mongiovi, Rohit Gheyi, Leonardo
Sousa, Rafael de Mello, Baldoino Fonseca, Márcio Ribeiro, and Alexander Chávez.
2017. Understanding the impact of refactoring on smells: A longitudinal study of
23 software projects. In 11th FSE (2017).

[8] Alexander Chávez, Isabella Ferreira, Eduardo Fernandes, Diego Cedrim, and
Alessandro Garcia. 2017. How does refactoring affect internal quality attributes?
A multi-project study. In 31st SBES (2017). 74–83.

[9] Mel Cinnéide and Paddy Nixon. 2000. Composite refactorings for Java programs.
In 14th ECOOP (2000). 129–135.

[10] Rafael Maiani de Mello, Anderson G. Uchôa, Roberto Felicio Oliveira,
Willian Nalepa Oizumi, Jairo Souza, Kleyson Mendes, Daniel Oliveira, Baldoino
Fonseca, and Alessandro Garcia. 2019. Do Research and Practice of Code Smell
Identification Walk Together? A Social Representations Analysis. In ESEM (2019).
IEEE, 1–6.

[11] Bart Du Bois, Serge Demeyer, and Jan Verelst. 2004. Refactoring: Improving
coupling and cohesion of existing code. In 11th WCRE (2004). 144–151.

[12] Dubbo. 2019. Refactoring to remove duplicate methods and feature envy. (2019).
Available at: https://github.com/apache/dubbo/pull/5506.

[13] Dubbo. 2019. Refactoring to remove feature envy. (2019). Available at: https:
//github.com/apache/dubbo/pull/5559.

[14] Dubbo. 2019. refactoring to remove feature envy. (2019). Available at: https:
//github.com/apache/dubbo/pull/5529.

[15] Dubbo. 2019. Rewrite UTs. (2019). Available at: https://github.com/apache/
dubbo/commit/66fbd320.

[16] Eduardo Fernandes. 2019. Stuck in the middle: Removing obstacles to new
program features through batch refactoring. In 41st ICSE: Doctoral Symposium
(2019). 1–4.

[17] Eduardo Fernandes, Johnatan Oliveira, Gustavo Vale, Thanis Paiva, and Eduardo
Figueiredo. 2016. A review-based comparative study of bad smell detection tools.
In 20th EASE (2016). 18:1–18:12.

[18] Eduardo Fernandes, Anderson Uchôa, Ana Carla Bibiano, and Alessandro Garcia.
2019. On the alternatives for composing batch refactoring. In 3rd IWoR, co-located:
41st ICSE (2019). 1–4.

[19] Eduardo Fernandes, Gustavo Vale, Leonardo Sousa, Eduardo Figueiredo, Alessan-
dro Garcia, and Jaejoon Lee. 2017. No code anomaly is an island: Anomaly
agglomeration as sign of product line instabilities. In 16th ICSR (2017). 48–64.

[20] Francesca Fontana, Marco Mangiacavalli, Domenico Pochiero, and Marco Zanoni.
2015. On experimenting refactoring tools to remove code smells. In 16th XP,
Scientific Workshops (2015). 1–7.

[21] Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code (1 ed.).
Addison-Wesley Professional.

[22] Everton T. Guimarães, Alessandro F. Garcia, and Yuanfang Cai. 2015. Architecture-
sensitive heuristics for prioritizing critical code anomalies. In 14th International
Conference on Modularity (2015), Robert B. France, Sudipto Ghosh, and Gary T.
Leavens (Eds.). ACM, 68–80.

[23] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2014. An
empirical study of refactoring: Challenges and benefits at Microsoft. TSE (2014)
40, 7 (2014), 633–649.

[24] Yun Lin, Xin Peng, Yuanfang Cai, Danny Dig, Diwen Zheng, and Wenyun Zhao.
2016. Interactive and guided architectural refactoring with search-based recom-
mendation. In FSE (2016). 535–546.

[25] Tom Mens and Tom Tourwé. 2004. A survey of software refactoring. TSE (2004)
30, 2 (2004), 126–139.

[26] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Kalyanmoy Deb,
and Mel Ó Cinnéide. 2014. Recommendation system for software refactoring
using innovization and interactive dynamic optimization. In 29th ASE (2014).
331–336.

[27] Emerson Murphy-Hill, Chris Parnin, and Andrew Black. 2012. How we refactor,
and how we know it. TSE (2012) 38, 1 (2012), 5–18.

[28] Willian Oizumi, Alessandro Garcia, Leonardo Sousa, Bruno Cafeo, and Yixue
Zhao. 2016. Code anomalies flock together: Exploring code anomaly agglomera-
tions for locating design problems. In 38th ICSE (2016). 440–451.

[29] Willian Nalepa Oizumi, Leonardo da Silva Sousa, Anderson Oliveira, Alessandro
Garcia, O. I. Anne Benedicte Agbachi, Roberto Felicio Oliveira, and Carlos Lucena.
2018. On the identification of design problems in stinky code: experiences and
tool support. J. Braz. Comp. Soc. (2018) 24, 1 (2018), 13:1–13:30.

[30] Willian Nalepa Oizumi, Alessandro F. Garcia, Leonardo da Silva Sousa, Bruno
Barbieri Pontes Cafeo, and Yixue Zhao. 2016. Code anomalies flock together:
exploring code anomaly agglomerations for locating design problems. In 38th
ICSE (2016), Laura K. Dillon, Willem Visser, and Laurie Williams (Eds.). ACM,
440–451.

[31] Roberto Felicio Oliveira, Leonardo da Silva Sousa, Rafael Maiani deMello, Natasha
M. Costa Valentim, Adriana Lopes, Tayana Conte, Alessandro F. Garcia, Edson
Cesar Cunha de Oliveira, and Carlos José Pereira de Lucena. 2017. Collaborative
Identification of Code Smells: A Multi-Case Study. In 39th ICSE-SEIP (2017). IEEE
Computer Society, 33–42.

[32] Roberto Felicio Oliveira, Rafael Maiani de Mello, Eduardo Fernandes, Alessandro
Garcia, and Carlos Lucena. 2020. Collaborative or individual identification of
code smells? On the effectiveness of novice and professional developers. IST
(2020) 120 (2020).

[33] Matheus Paixão, Anderson Uchôa, Ana Carla Bibiano, Daniel Oliveira, Alessandro
Garcia, Jens Krinke, and Emilio Arvonio. 2020. Behind the Intents: An In-depth
Empirical Study on Software Refactoring in Modern Code Review. In 17th MSR
(2020).

[34] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco
Oliveto, and Andrea De Lucia. 2018. A large-scale empirical study on the lifecycle
of code smell co-occurrences. IST (2018) 99 (2018), 1–10.

[35] Fabio Palomba, Andy Zaidman, Rocco Oliveto, and Andrea De Lucia. 2017. An
exploratory study on the relationship between changes and refactoring. In 25th
ICPC (2017). IEEE, 176–185.

[36] José Amancio M Santos, João B Rocha-Junior, Luciana Carla Lins Prates,
Rogeres Santos do Nascimento, Mydiã Falcão Freitas, and Manoel Gomes de
Mendonça. 2018. A systematic review on the code smell effect. JSS (2018) 144
(2018), 450–477.

[37] Danilo Silva, Nikolaos Tsantalis, andMarco Tulio Valente. 2016. Whywe refactor?
Confessions of GitHub contributors. In 24th FSE (2016). 858–870.

[38] Leonardo Sousa, Diego Cedrim, Alessandro Garcia, Willian Oizumi, Ana Carla
Bibiano, Daniel Tenorio, Miryung Kim, and Anderson Oliveira. 2020. Character-
izing and Identifying Composite Refactorings: Concepts, Heuristics and Patterns.
In 17th MSR (2020).

[39] Leonardo Sousa, Anderson Oliveira, Willian Oizumi, Simone Barbosa, Alessandro
Garcia, Jaejoon Lee, Marcos Kalinowski, Rafael de Mello, Baldoino Fonseca,
Roberto Oliveira, Carlos Lucena, and Rodrigo Paes. 2018. Identifying design
problems in the source code: A Grounded Theory. In 40th ICSE (2018). 921–931.

[40] Gábor Szőke, Csaba Nagy, Lajos Fülöp, Rudolf Ferenc, and Tibor Gyimóthy. 2015.
FaultBuster: An automatic code smell refactoring toolset. In 15th SCAM (2015).
253–258.

[41] Daniel Tenorio, Ana Carla Bibiano, and Alessandro Garcia. 2019. On the cus-
tomization of batch refactoring. In 3rd IWoR, co-alocated ICSE (2019). IEEE Press,
13–16.

[42] Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzigeorgiou. 2018.
Ten years of JDeodorant: Lessons learned from the hunt for smells. In P25th
SANER (2018). 4–14.

[43] Nikolaos Tsantalis, Matin Mansouri, Laleh Eshkevari, Davood Mazinanian, and
Danny Dig. 2018. Accurate and efficient refactoring detection in commit history.
In 40th ICSE (2018). 483–494.

[44] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano
Di Penta, Andrea De Lucia, and Denys Poshyvanyk. 2017. When and why your
code starts to smell bad (and whether the smells go away). TSE (2017) 43, 11
(2017), 1063–1088.

[45] Santiago A. Vidal, Willian Nalepa Oizumi, Alessandro Garcia, J. Andres Diaz-Pace,
and Claudia Marcos. 2019. Ranking architecturally critical agglomerations of
code smells. Sci. Comput. Program. (2019) 182 (2019), 64–85.

[46] Aiko Yamashita and Leon Moonen. 2013. Do developers care about code smells?
An exploratory survey. In 20th WCRE (2013). 242–251.

[47] Norihiro Yoshida, Tsubasa Saika, Eunjong Choi, Ali Ouni, and Katsuro Inoue.
2016. Revisiting the relationship between code smells and refactoring. In 24th
ICPC (2016). 1–4.

